

V	Final Report
	Revised Report

Report Date: 02-Oct-18 13:17

Laboratory Report SC50467

Gulf Oil L.P. 281 Eastern Avenue Chelsea, MA 02150 Attn: Andrew P. Adams

Project: Gulf Terminal - Chelsea, MA

Project #: Gulf Chelsea

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Dawn Wojcik Laboratory Director

Eurofins Spectrum Analytical holds primary certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 11 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC50467

Project: Gulf Terminal - Chelsea, MA

Project Number: Gulf Chelsea

Laboratory IDClient Sample IDMatrixDate SampledDate ReceivedSC50467-01Outfall 003Surface Water20-Sep-18 11:5020-Sep-18 16:23

02-Oct-18 13:17 Page 2 of 11

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 2.9 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

Analyses for Total Hardness, pH, and Total Residual Chlorine fall under the state of Pennsylvania code Chapter 252.6 accreditation by

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SM4500-Cl-G (11)

Spikes:

1812971-MS1 Source: SC50467-01

The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.

Total Residual Chlorine

1812971-MSD1 Source: SC50467-01

The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were accepted based on LCS/LCSD or SRM recoveries within the control limits.

Total Residual Chlorine

SM5310B (00, 11)

Samples:

SC50467-01 Outfall 003

The Reporting Limit has been raised to account for matrix interference.

Total Organic Carbon

SW6020B

Laboratory Control Samples:

CB35489-LCS

Laboratory water was used for the matrix spike.

Copper

Lead

Nickel

Zinc

CB35489-BLK

This laboratory report is not valid without an authorized signature on the cover page.

SW6020B

CB35489-BLK
Laboratory water was used for the matrix spike.
Copper
Lead
Nickel
Zinc
CB35489-DUP
Laboratory water was used for the matrix spike.
Copper
Lead
Nickel
Zinc
CB35489-MS
Laboratory water was used for the matrix spike.
Copper
Lead
Nickel
Zinc

02-Oct-18 13:17 Page 4 of 11

Sample Acceptance Check Form

Client:

Gulf Oil L.P.

Project:	Gulf Terminal - Chelsea, MA / Gulf Chelsea			
Work Order:	SC50467			
Sample(s) received on:	9/20/2018			
The following outlines	the condition of samples for the attached Chain of Custody upon receipt.			
		<u>Yes</u>	<u>No</u>	N/A
Were custody s	eals present?		\checkmark	
Were custody s	eals intact?			✓
Were samples	eceived at a temperature of \leq 6°C?	\checkmark		
Were samples	efrigerated upon transfer to laboratory representative?	\checkmark		
Were sample co	ontainers received intact?	\checkmark		
	properly labeled (labels affixed to sample containers and include sample ID, site r project number and the collection date)?	V		
Were samples a	accompanied by a Chain of Custody document?	\checkmark		
include sample	Custody document include proper, full, and complete documentation, which shall ID, site location, and/or project number, date and time of collection, collector's name, pe, sample matrix and any special remarks concerning the sample?		√	
Did sample cor	ntainer labels agree with Chain of Custody document?	\checkmark		
Were samples	received within method-specific holding times?	\checkmark		

Summary of Hits

Client ID:

Outfall 003

Lab ID: SC50467-01

Flag Result Units **Analytical Method Parameter Reporting Limit** 0.15 0.05 Ammonia as Nitrogen $mg\!/L$ E350.1 **Total Solids** 231 5.00 SM2540 B (11) mg/l**Total Suspended Solids** 91.0 5.0 mg/lSM2540D (11) Total Organic Carbon R01 SM5310B (00, 11) 2.60 1.00 mg/lCopper 0.0093 0.0025 mg/L SW6020B Lead 0.0213 0.0005 mg/L SW6020B Nickel 0.0041 SW6020B 0.0025mg/L Zinc 0.053 0.005 SW6020B $mg\!/L$

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

02-Oct-18 13:17 Page 6 of 11

Sample Id Outfall 00 SC50467-				Client Programmer Client Clien			Matrix Surface W	<u> </u>	ection Date 0-Sep-18 11			eceived Sep-18	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General C	hemistry Parameters												
7782-50-5	Total Residual Chlorine	< 0.020	CIHT	mg/l	0.020	0.006	1	SM4500-CI-G (11)	27-Sep-18 08:36	27-Sep-18 10:01	RLT	1812971	Х
	рН	6.75	pН	pH Units			1	ASTM D 1293-99B	20-Sep-18 18:15	20-Sep-18 18:38	BD	1812763	X
	Salinity	< 1.00		ppt (1000)	1.00	0.144	1	SM 2520 (01)	21-Sep-18	21-Sep-18	BD	1812778	
	Total Solids	231		mg/l	5.00	1.53	1	SM2540 B (11)	27-Sep-18	28-Sep-18	CMB	1812991	
	Total Suspended Solids	91.0		mg/l	5.0	2.2	1	SM2540D (11)	21-Sep-18	24-Sep-18	BD	1812779	X
	Total Organic Carbon	2.60	R01	mg/l	1.00	0.238	1	SM5310B (00, 11)	27-Sep-18	27-Sep-18	RLT	1812970	X
Prepared	cted Analyses by method E350.1	. 17. 7	* * 1//	777007									
Analysis pe 7664-41-7	erformed by Phoenix Environ		Inc. * - MAC		0.05	0.02	4	E350.1	20 0 10	05 Can 40	OT007	448692A	
7004-41-7	Ammonia as Nitrogen	0.15		mg/L	0.05	0.02	1	E350.1	20-Sep-18 11:50	25-Sep-18 07:53	C1007	448692A	
Prepared	by method SM3113B/SW	<u>/7010-1</u>											
Analysis pe	erformed by Phoenix Enviro	nmental Labs,	Inc. * - MAC	T007									
7440-43-9	Cadmium	< 0.0001		mg/L	0.0001	0.0001	1	SM3113B/SW70 10-1	27-Sep-18	28-Sep-18 09:31	CT007	449326A	ı
	acted Analyses by method SW6020B												
Analysis pe	erformed by Phoenix Enviro	nmental Labs,	Inc. * - MAC	T007									
7440-50-8	Copper	0.0093		mg/L	0.0025	0.0005	5	SW6020B	21-Sep-18	26-Sep-18 14:30	CT007	448531A	i
7439-92-1	Lead	0.0213		mg/L	0.0005	0.0005	5	"	"	"	"	"	
7440-02-0	Nickel	0.0041		mg/L	0.0025	0.0005	5	"	"	"	"	"	
7440-66-6	Zinc	0.053		mg/L	0.005	0.0005	5	"	"	"	"	"	

02-Oct-18 13:17 Page 7 of 11

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag U	nits *R	DL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
ASTM D 1293-99B										
Batch 1812763 - General Preparation										
Reference (1812763-SRM1)					Pre	epared & Aı	nalyzed: 20	-Sep-18		
рН	6.00	рН	Units		6.00		100	97.5-102. 5		
Reference (1812763-SRM2)					Pre	epared & Ar	nalyzed: 20			
pH	5.99	рН	Units		6.00		100	97.5-102. 5		
SM 2520 (01)								5		
Batch 1812778 - General Preparation										
Reference (1812778-SRM1)					Pre	epared & Ar	nalyzed: 21	-Sep-18		
Salinity	10.2	ppt (1000) 1.	00	10.0		102	90-110		
Reference (1812778-SRM2)					Pre	epared & Ar	nalyzed: 21	-Sep-18		
Salinity	10.1	ppt (1000) 1.	00	10.0		101	90-110		
SM2540 B (11)										
Batch 1812991 - General Preparation										
Blank (1812991-BLK1)					Pre	epared: 27-	Sep-18 Ar	nalyzed: 28-9	Sep-18	
Total Solids	< 5.00	m	ng/l 5	00						
LCS (1812991-BS1)					<u>Pre</u>	epared: 27-	Sep-18 Ar	nalyzed: 28-9	Sep-18	
Total Solids	1100	m	ng/l 10	0.0	1100		100	90-110		
<u>Duplicate (1812991-DUP1)</u>			rce: SC5046		Pre		Sep-18 Ar	nalyzed: 28-5		
Total Solids	233	m	ng/l 5.	00		231			0.9	5
<u>5M2540D (11)</u>										
Batch 1812779 - General Preparation										
Blank (1812779-BLK1)					Pre	epared: 21-	Sep-18 Ar	nalyzed: 24-9	Sep-18	
Total Suspended Solids	< 0.5	m	ng/I C	.5						
LCS (1812779-BS1)						epared: 21-		nalyzed: 24-9	Sep-18	
Total Suspended Solids	102	m	ng/l 10	0.0	100		102	90-110		
<u>5M4500-Cl-G (11)</u>										
Batch 1812971 - General Preparation										
Blank (1812971-BLK1)	- 0.000		· · · // · · · · · · · · · · · · · · ·	200	<u>Pre</u>	epared & Ar	nalyzed: 27	<u>-Sep-18</u>		
Total Residual Chlorine	< 0.020	m	ng/l 0.0)20		nor-40 1	a a lu == = = !	Con 40		
LCS (1812971-BS1) Total Residual Chlorine	0.049		na/l C	020	<u>Pre</u> 0.0500	epared & Ar	<u>nalyzed: 27</u> 98	<u>-Sep-18</u> 90-110		
	0.049	п	ng/l 0.0	JZU		epared & Ar				
Calibration Blank (1812971-CCB1) Total Residual Chlorine	-0.003	m	ng/l		<u> 116</u>	zpareu & Al	iaiyzeu. Z/	-0ch-10		
Calibration Blank (1812971-CCB2)	-0.003	ıı	·9′ ·		Dro	epared & Ar	nalvzed: 27	-Sen-18		
Total Residual Chlorine	-0.004	m	ng/l		<u> </u>	parcu & Al	naryzcu. Z/	Jep-10		
Calibration Blank (1812971-CCB3)			•		Pre	epared & Ar	nalyzed: 27	-Sep-18		
Total Residual Chlorine	-0.002	m	ng/l		. 10		,			
Calibration Check (1812971-CCV1)			-		Pre	epared & Ar	nalyzed: 27	<u>-Sep-</u> 18		
Total Residual Chlorine	0.045	m	ng/l 0.0	020	0.0500		91	90-110		
Calibration Check (1812971-CCV2)					Pre	epared & Aı	nalyzed: 27	-Sep-18		
Total Residual Chlorine	0.045	m	ng/l 0.0	020	0.0500		90	90-110		
Calibration Check (1812971-CCV3)					Pre	epared & Ar	nalyzed: 27	-Sep-18		
Total Residual Chlorine	0.055	m	ng/l 0.0	020	0.0500		110	90-110		
<u>Duplicate (1812971-DUP1)</u>		<u>Sour</u>	ce: SC5046	<u>′-01</u>	Pre	epared & Ar	nalyzed: 27	-Sep-18		
Total Residual Chlorine	< 0.020	m	ng/l 0.0	020		BRL				20
Matrix Spike (1812971-MS1)		<u>Sour</u>	ce: SC5046	<u>′-01</u>	Pre	epared & Ar	nalyzed: 27	-Sep-18		
Total Residual Chlorine	0.067	QM9 m	ng/l 0.0	020	0.0500	BRL	133	80-120		
Matrix Spike Dup (1812971-MSD1)		Soui	ce: SC5046	7-01	Pre	epared & Ar	nalyzed: 27	-Sep-18		

General Chemistry Parameters - Quality Control

A 1.70	P 1:	r.	** **	40.01	Spike	Source	0/855	%REC	DES	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
SM4500-Cl-G (11)										
Batch 1812971 - General Preparation										
Matrix Spike Dup (1812971-MSD1)			Source: SC	50467-01	<u>Pre</u>	epared & A	nalyzed: 27	-Sep-18		
Total Residual Chlorine	0.067	QM9	mg/l	0.020	0.0500	BRL	135	80-120	1	200
Reference (1812971-SRM1)					<u>Pre</u>	epared & A	nalyzed: 27	-Sep-18		
Total Residual Chlorine	0.115		mg/l	0.020	0.117		98	98-101		
SM5310B (00, 11)										
Batch 1812970 - General Preparation										
Blank (1812970-BLK1)					<u>Pre</u>	epared & A	nalyzed: 27	-Sep-18		
Total Organic Carbon	< 1.00		mg/l	1.00						
LCS (1812970-BS1)					Pre	epared & A	nalyzed: 27	-Sep-18		
Total Organic Carbon	4.30		mg/l	1.00	5.00		86	85-115		
Calibration Blank (1812970-CCB1)					Pre	epared & A	nalyzed: 27	-Sep-18		
Total Organic Carbon	0.102		mg/l							
Calibration Blank (1812970-CCB2)					Pre	epared & A	nalyzed: 27	-Sep-18		
Total Organic Carbon	0.129		mg/l							
Calibration Blank (1812970-CCB3)					Pre	epared & A	nalyzed: 27	-Sep-18		
Total Organic Carbon	0.110		mg/l							
Calibration Check (1812970-CCV1)					Pre	epared & A	nalyzed: 27-	-Sep-18		
Total Organic Carbon	4.48		mg/l	1.00	5.00		90	85-115		
Calibration Check (1812970-CCV2)					Pre	epared & A	nalyzed: 27	-Sep-18		
Total Organic Carbon	4.30		mg/l	1.00	5.00		86	85-115		
Calibration Check (1812970-CCV3)					<u>Pre</u>	epared & A	nalyzed: 27	-Sep-18		
Total Organic Carbon	4.72		mg/l	1.00	5.00		94	85-115		
<u>Duplicate (1812970-DUP1)</u>			Source: SC	50467-01	<u>Pre</u>	epared & A	nalyzed: 27	-Sep-18		
Total Organic Carbon	2.98		mg/l	1.00		2.60			14	20
Matrix Spike (1812970-MS1)			Source: SC	50467-01	Pre	epared & A	nalyzed: 27	-Sep-18		
Total Organic Carbon	7.32		mg/l	1.00	5.00	2.60	94	70-130		
Matrix Spike Dup (1812970-MSD1)			Source: SC	50467-01	Pre	epared & A	nalyzed: 27	-Sep-18		
Total Organic Carbon	7.33		mg/l	1.00	5.00	2.60	95	70-130	0.2	30
Reference (1812970-SRM1)					Pre	epared & A	nalyzed: 27	-Sep-18		
Total Organic Carbon	4.65		mg/l	1.00	5.00		93	85-115		

Subcontracted Analyses - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
E350.1										
Batch 448692A - E350.1										
BLK (CB35671-BLK)			Source: Cl	B35671	Pre	enared: 24-	Sen-18 Ar	nalyzed: 25-S	en-18	
Ammonia as Nitrogen	< 0.05		mg/L	0.05	<u></u>	Sparou. E i	BRL	- -	<u>10</u>	
DUP (CB35671-DUP)			Source: Cl		Pre	enared: 24		nalyzed: 25-S	en-18	
Ammonia as Nitrogen	0.11		mg/L	0.10	<u>- 10</u>	sparca. 24	OCP 10 71	- -	NC	20
LCS (CB35671-LCS)	0		Source: Cl		Dra	anared: 24	San-18 Ar	nalyzed: 25-S		20
Ammonia as Nitrogen	3.900		mg/L	0.05	3.74	spareu. 24-	104	90-110	ер-10	20
ŭ	3.900		· ·			norod: 01			on 10	20
MS (CB35671-MS) Ammonia as Nitrogen	4.240		Source: Cl	0.05	4	epared: 24-	103	nalyzed: 25-S 90-110	ep-18	20
-	4.240		mg/L	0.05	4		103	90-110		20
<u>SM3113B/SW7010-1</u>										
Batch 449326A - SM3113B/SW7010-1										
BLK (CB39279-BLK)			Source: Cl	B39279	Pre	epared: 27-		nalyzed: 28-S	Sep-18	
Cadmium	< 0.0001		mg/L	0.0001			BRL	-		
<u>DUP (CB39279-DUP)</u>			Source: Cl	B39279	Pre	epared: 27-	Sep-18 Ar	nalyzed: 28-S	Sep-18	
Cadmium	< 0.0001		mg/L	0.0001				-	NC	20
LCS (CB39279-LCS)			Source: Cl	B39279	Pre	epared: 27-	Sep-18 Ar	nalyzed: 28-S	Sep-18	
Cadmium	0.5570		mg/L	0.0001	0.5		111	75-125		20
MS (CB39279-MS)			Source: Cl	B39279	Pre	epared: 27-	Sep-18 Ar	nalyzed: 28-S	Sep-18	
Cadmium	0.6210		mg/L	0.0001	0.5		124	75-125		20
SW6020B										
Batch 448531A - SW6020B										
BLK (CB35489-BLK)			Source: Cl	B35489	Pre	enared: 21-	Sen-18 Ar	nalyzed: 26-S	Sen-18	
Copper	< 0.0025	c1	mg/L	0.0025			BRL	-	<u></u>	
Zinc	< 0.005	c1	mg/L	0.005			BRL	_		
Lead	< 0.0005	c1	mg/L	0.0005			BRL	_		
Nickel	< 0.0025	c1	mg/L	0.0025			BRL	_		
DUP (CB35489-DUP)			Source: Cl		Pre	enared: 21-		nalyzed: 26-S	en-18	
Copper	0.0050	c1	mg/L	0.0025	<u></u>	<u> </u>	<u>00p 10 711</u>	- -	5.8	20
Lead	< 0.0005	c1	mg/L	0.0005				_	NC	20
Nickel	0.0038	c1	mg/L	0.0025				_	5.1	20
Zinc	0.039	c1	mg/L	0.005				_	0.0	20
LCS (CB35489-LCS)			Source: Cl		Pre	enared: 21-	Sen-18 Ar	nalyzed: 26-S		
Copper	0.05560	c1	mg/L	0.0025	0.05	<u> </u>	111	75-125	10 10	20
Lead	0.05160	c1	mg/L	0.0005	0.05		103	75-125		20
Nickel	0.05120	c1	mg/L	0.0025	0.05		102	75-125		20
Zinc	0.05870	c1	mg/L	0.005	0.05		117	75-125		20
MS (CB35489-MS)	2.000.0		Source: Cl			enared: 21 ₋		nalvzed: 26-S	en-18	_,
Zinc	0.06050	c1	mg/L	0.005	0.05	<u> </u>	121	75-125	<u>-ιυ</u>	20
Copper	0.05400	c1	mg/L	0.003	0.05		108	75-125 75-125		20
Copper	0.05160	c1	mg/L	0.0025	0.05		103	75-125 75-125		20
Lead	() ((5160)									

02-Oct-18 13:17 Page 10 of 11

Notes and Definitions

c1 Laboratory water was used for the matrix spike.

QM9 The spike recovery for this QC sample is outside the established control limits. The sample results for the QC batch were

accepted based on LCS/LCSD or SRM recoveries within the control limits.

R01 The Reporting Limit has been raised to account for matrix interference.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

ClHT The method for residual chlorine indicates that samples should be analyzed immediately. 40 CFR 136 specifies a holding

time of 15 minutes from sampling to analysis. Therefore all aqueous residual chlorine samples not analyzed in the field are

considered out of hold time at the time of sample receipt.

pH The method for pH does not stipulate a specific holding time other than to state that the samples should be analyzed as

soon as possible. For aqueous samples the 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis. Therefore all aqueous pH samples not analyzed in the field are considered out of hold time at the time of sample receipt.

All soil samples are analyzed as soon as possible after sample receipt.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

ALLO ACTIVATIONAL AT CALLY 1 12	Featuring	SPECTRUM ANALYTICAL, INC.				
					•	
		_				

Project Mgr. Andrew Adams	Telephone #: 617.884.5980	Chelsea, MA 02150	281 Eastern Ave	Gulf Oil LP	Report To: Andrew Adams	HANIBAL TECHNOLOGY	SPECTRUM ANALYTICAL, INC.		2	
P.O No.: Quote/RQN:		Wellesley, MA 02481-3705	80 William St, Suite 400	Gulf Oil LP	Invoice To: Christopher Gill	,	Page 1 of 1	CHAIN OF CUSTODY RECORD		
	Sampler(s):	Location:		Site Name:	Project No:					
		281 Eastern Ave, Chelsea State: MA	Ž.	Gulf Chelsea Terminal	Gulf Chelsea	Samples disposed after 60 days unless otherwise instructed.	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes	☐ Rush TAT - Date, Needed:	Standard TAT -7 to 10 business days	Special Handling:

	☐ DI VOA Frozen ☐ Soil Jar Frozen		A Refrigerated	lced	☐ Ambient ☐ Iced		16	IR ID#							·					
	□ Present □ Intact □ Broken		Custody Seals	receipt	Condition upon receipt	Condu	Sed V				,	,		decision)						
	jennifer.atkins@aecom.com	jennifer					Correction Factor	S CO	2	/	81/0	18		9				Dec	12 July 12 Jul	*
52A	aadams@gulfoil.com, cgill@gulfoil.com, and	com, cgill(ms@gulfoil	aada	E-mail to:	Ø		Observe C	25	\	20-18	9-2		h	Dans	9			K	
delive				at:	EDD format:		Temp °C	4	Time:		Date:	Đ		y:	Received by:			Relinquished by:	Relinq	
Sample	**LC50 sub to GZA																		8	
000	* Report down to MDL																			
	Cu - 0.5 µg/L; Zn - 5 µg/L		-						,			N								
	Cd, Pb, Ni - 0.2 ug/L		*			i i	i		the			SW.	ф			1	Outfall 003-	0		
*	benzo(a)pyrene - 0.1 µg/L			×							2	WS	ရ	1150	-20-18	9.	Outfall 003	0	F	3
e ⁿ	naphthalene-5 µg/L			×					_			WS	ရ	1150	-2018	9	Outfall 003	0		
	benzene-2 μg/L; ethanol-400 μg/L				×	,			_			WS	G	1150	8102.	9	Outfall 003	0		9
	Required Minimum Levels:					×			_		i	WS	G	0511	-20-18	2	Outfall 003	0		
	MTBE, and ethanol		1				×		1			WS	ဝ	0.511	9-20-18	2	Outfall 003	0	4	-
	VOCs: benzene, naphthalene,		Sec.					×	1	* =		WS	្ធ	1150	-20-18	9	Outfall 003	0	77.7	2
	State-specific reporting standards:	Ch	LC:	Pb,	TRO	TSS	рН	Amı	# of	# of	-		T	Time:	Date:		Sample ID:	Sa	Lab ID:	_
	rII*	eck if	5 0 * *	Ni, Zr	al Rec			monia	Plasti	Clear		atrix VOA	уре		C=Compsite			G= Grab	G=	
	☐ ASP A* ☐ ASP B*	chlori	A	i)*	otal sol				С	Glass	er Glas	Viola			X3=		X2=_		= X	- LIII OUG
	☑ Standard ☐ No QC ☐ DQA*	nated	Ċ								SS	!		as	SG=Soil Gas	A=Indoor/Ambient Air		SL=Sludge	il SO=Soil	0=0il
	MA DEP MCP CAM Report?				Analysis				TS.	Containers				ww=Waste Water		SW=Surface Water		GW=Groundwater	DW =Dinking Water	DW
	0.0000000000000000000000000000000000000		11	10	11 4	11	3	ω										*		
	QA/QC Reporting Notes:		ow:	ode bek	List Preservative Code below:	st Prese	Li					Acid	6=Ascorbic Acid	5 =NaOH 6=.	4=HNO ₃ 5=N		2=HCl 3	1=Na ₂ S2O ₃	F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₂ PO ₄	F =Fi
										,							Vildica Vadin		riojeci Mgi.	rioje

Batch Summary

1812763

General Chemistry Parameters

1812763-SRM1

1812763-SRM2

SC50467-01 (Outfall 003)

1812778

General Chemistry Parameters

1812778-SRM1 1812778-SRM2

SC50467-01 (Outfall 003)

1812779

General Chemistry Parameters

1812779-BLK1 1812779-BS1

SC50467-01 (Outfall 003)

1812970

General Chemistry Parameters

1812970-BLK1

1812970-BS1

1812970-CCB1

1812970-CCB2

1812970-CCB3

1812970-CCV1

1812970-CCV2

1812970-CCV3

1812970-DUP1

1812970-MS1

1812970-MSD1

1812970-SRM1

SC50467-01 (Outfall 003)

1812971

General Chemistry Parameters

1812971-BLK1

1812971-BS1

1812971-CCB1

1812971-CCB2

1812971-CCB3

1812971-CCV1

1812971-CCV2

1812971-CCV3

1812971-DUP1

1812971-MS1

1812971-MSD1

1812971-SRM1

SC50467-01 (Outfall 003)

<u>1812991</u>

General Chemistry Parameters

1812991-BLK1

1812991-BS1

1812991-DUP1

SC50467-01 (Outfall 003)

448531A

Subcontracted Analyses

CB35489-BLK

CB35489-DUP

CB35489-LCS

CB35489-MS

SC50467-01 (Outfall 003)

448692A

Subcontracted Analyses

CB35671-BLK

CB35671-DUP

CB35671-LCS

CB35671-MS

SC50467-01 (Outfall 003)

449326A

Subcontracted Analyses

CB39279-BLK

CB39279-DUP

CB39279-LCS

CB39279-MS

SC50467-01 (Outfall 003)